Environmental Conservation Graduate Program

Water, Wetlands and Watersheds Concentration

A. Concentration Description

This concentration leads to both Master of Science (MS) and Doctor of Philosophy (PhD) degrees in Environmental Conservation (ECo) and is designed for students who want scientific training in the multi-disciplinary field of water, wetlands and watershed conservation. The focus of this concentration is broadly on water resources but encompasses specialized training in fields such as wetlands, hydrology, nonpoint source pollution, modeling, ecosystems, water resource management, watershed sciences, economics, climatic impacts, and water-related policy. There are many options for specialized training within this concentration. For example, students may choose to specialize in wetlands, where they will gain an understanding of wetland ecology, including hydrology, soils, plants, and wildlife; field methods for wetland delineation and functional assessment; and public policy relating to state and federal wetland regulatory programs. Or, for example, students may choose to specialize in watershed science and management, where they will gain an understanding of the science underlying a watershed system and develop technical skills in integrated watershed management. More specifically, students will develop a comprehensive understanding of the interrelated components of watersheds, including: land cover, hydrology, terrestrial and aquatic ecosystems, socioeconomic processes, pollutant transfer, institutions, communities, and economic growth.
Faculty affiliated with this concentration (see below) have expertise in watershed science, hydrology, water resource management, water economics, wetland delineation, wetland ecology and conservation, modeling and GIS, water quality, forest and wetland hydrology, inland and coastal resources, marine issues, spatial analysis, water policy, aquatic biodiversity, watershed conservation, climate change, land use hydrology, and ecohydrology. A major strength of our program is the unique convergence of Universities, federal and state agencies with water resources focus, which is unmatched in the Northeast. A series of cooperative agreements, memoranda of research understanding and sole-source vendor relationships with state and federal agencies provide a strong base of research funding. These agreements also provide important teaching and research relationships between our program and state and federal natural resource agencies.

The research emphasis in this concentration focuses broadly on wetland and watershed science, landuse and hydrology, spatial analysis and remote sensing, climate change impacts, and water resource policy. Wetland research focuses on wetland ecology and biodiversity, functional assessment, remote sensing and mapping, and public policy relating to state and federal wetland regulatory programs. Watershed research focuses on watershed and landscape ecology, ecohydrology, modeling, ecological economics, and resource policy. Landuse and hydrology research focuses on water supply and allocation, water quality management, aquatic toxicology and bioremediation, stormwater management, spatial modeling, and water markets.

Through their research projects, graduate students often employ or provide volunteer opportunities for interested undergraduates. Graduate students are encouraged to participate in projects and activities of their colleagues to broaden their experience and to provide and receive ideas and suggestions for improvements.

At the MS level, students have the option of pursuing either a professional degree or thesis degree. The thesis/dissertation degree leads to the MS or PhD degree and centers around the completion of a major independent research project in addition to a rigorous coursework requirement. The professional degree leads to the MS degree and centers around a professional paper based on an internship/practicum that relates to problem-solving in this concentration, in addition to a more substantial coursework requirement. Both degree options provide students a strong foundation in three core topic areas: environmental science (biology, ecology, conservation and environmental building systems), 2) quantitative science (statistics, GIS and modeling), and 3) human dimensions (environmental policies, economics, politics,}

Concentration in Water, Wetlands and Watersheds
administration, management and values). The MS thesis degree is intended to prepare students for the option of pursuing a PhD or a career in conservation science. The MS professional degree is meant to be a terminal degree for students seeking graduate-level training in a particular field of study and a career as a professional conservation scientist. Overall, the academic requirements of this concentration in combination with the research/practicum experience provide students the professional training for conservation science positions within academia, state and federal resource management agencies, non-governmental conservation organizations, and private industry (e.g., environmental consulting firms). In addition, MS thesis degree students completing this program are well prepared to meet the challenges of any PhD program.

B. The MS Professional Degree

Prerequisites

Candidates for an MS professional degree in this concentration will be admitted on the basis of their academic training, work experience, and letters of recommendation. At a minimum, candidates will be expected to possess:

1) a Bachelor's degree in:
 • a natural resources field or environmental sciences; or
 • the biological sciences with an emphasis in ecology; or
 • any field with strong background in mathematics, applied statistics, and policy with some coursework in biological and physical sciences, and professional experience working as a natural resources professional.

Note, prerequisites exist for many of the required courses. Students are expected to have satisfied these prerequisites prior to commencing the program or in addition to the curriculum requirements outlined below.

Requirements

Students in this concentration are expected to meet all of the requirements for a MS degree in ECo, as outlined in the student handbook, including the following:

1) A minimum of 35 credits is required, 21 of which must be in the major (defined broadly), 8 of which must be at the 600 level or above, and 6 of which must be an internship/practicum specific to this concentration and approved by the student's advisory committee; up to 6 graduate credits can be transferred from previous course work from
UMass or another university;

2) Successful completion of a comprehensive exam based upon the student’s academic training in environmental conservation, encompassing three “core” topic areas (environmental science, quantitative science, and human dimensions) in addition to the required ECo core courses; and

3) Successful final defense of a publishable-quality professional paper resulting from the internship/practicum.

Curriculum

Note, all courses ending in 97 have an additional letter designation (e.g., 697A) not specified below because it is subject to change; check SPIRE online for the current course number listing.

1. Required Core Courses (8 credits) (take all of the following)

 ECO 601 Research concepts (fall, 3cr)
 ECO 697 Analysis of environmental data - lecture (fall, 3cr)
 ECO 791A Communicating science (spr, 1cr)
 ECO 691A Current research in environmental conservation (both, 1cr)

2. Core Topic Areas (21 credits) (including a minimum of one 500-level or above 3-4 credit course in each core topic area below, plus a minimum of three additional courses, as approved by student’s committee; note, students may take courses other than those listed here to fulfill the core topic area requirements if they are approved by the students advisory committee and the Graduate Concentration Coordinator; course numbers are subject to change)

 a. Environmental Science (take two or more of the following)

 NRC 528 Forest & wetland hydrology (fall odd yrs, 3 cr)
 NRC 540 Forest resource management (spr even yrs, 4 cr)
 NRC 564 Wildlife habitat management (fall, 4cr)
 NRC 565 Wildlife population dynamics & management (fall, 4cr)
 NRC 571 Fisheries science & management (fall even yrs, 4cr)
 NRC 597 Global change ecology (fall, 3cr)
 NRC 597 Aquatic ecology (spr odd yrs, 3cr)
 NRC 597 Ecology of fish (spr even yrs, 4cr)
 NRC 597 Watershed science & management (spr, 3cr)
 NRC 597 Wetlands assessment & field techniques (spr odd yrs, 2 cr)
 NRC 597 Conservation genetics (fall, 4 cr)
 ECO 621 Landscape ecology (spr even yrs, 4cr)
 ECO 697 Conservation biology (fall odd yrs, 3cr)
 ECO 697 Diadromous fisheries ecology & conserv. (fall even yrs, 3cr)
 ECO 697 Land use & watershed management (fall even yrs, 3 cr)
 ECO 697 Advanced watershed management (spr even yrs, 3 cr)
ECO 697 Predator-prey interactions (fall even yrs, 3cr)
ECO 697 Urban ecology (fall, 4cr)
ECO 697 Applied conservation genetics (fall even yrs, 4cr)
ECO 697 Conservation of aquatic ecosystems (spr odd yrs, 3 cr)
ECO 720 Ecological interactions of fishes (spr odd yrs, 3cr)
ECO 757 Advanced fisheries management (tbd, 3cr)
ECO 768 Wetlands ecology & conservation (fall even yrs, 3 cr)
OEB 797 Environmental evolution (fall, 3 cr)
PLSOIL 566 Soil formation, classification & land use (spr odd yrs, 3 cr)
PLSOIL 597 Wetland plant ID & ecology (fall even yrs, 3cr)
PLSOIL 597 Wetlands delineation (fall odd yrs, 3cr)
CE-ENG 560 Hydrology (fall, 3 cr)

b. Quantitative Science (take one or more of the following)

NRC 577 Ecosystem modeling & simulation (fall odd yrs, 3cr)
NRC 587 Digital remote sensing (spr odd yrs, 3cr)
NRC 592 GIS for natural resource management (both, 3cr)
ECO 697 Multivariate statistics for environmental cons. (spr odd yrs, 4cr)
ECO 697 Advanced topics in GIS (fall odd yrs, 3cr)
ECO 697 Intermediate statistics for environmental cons. (spr, 4cr)
ECO 697 Advanced statistics for environmental cons. (fall even yrs, 4cr)
ECO 697 Analysis of environmental data - lab (fall, 2cr)
ECO 777 Advanced systems ecology (spr even yrs, 3cr)
GEO-SCI 595A Advanced GIS (spr, 3 cr)
CE-ENG 577 Surface water quality modeling (spr, 3 cr)
CE-ENG 662 Water resources systems analysis (spr, 3 cr)
REGIONPL 625 Quantitative methods in planning (fall, 3 cr)
PLSOIL 661 Intermediate biometry (fall, 3 cr)

C. Human Dimensions (take one or more of the following courses)

NRC 597 Ecological economics & sustainability (spr odd yrs, 3 cr)
NRC 597 Water resources management and policy (fall even yrs, 3 cr)
ECO 697 Federal environmental law & regulation (spr even yrs, 3cr)
ECO 697 Human dimensions of natural res. cons. (tbd, 3cr)
ECO 697 Natural resources policy & administration (tbd, 3cr)
REGIONPL 553 Resource policy & planning (spr even yrs, 3 cr)
REGIONPL 575 Environmental law & resource management (tbd, 3 cr)
RES-ECON 720 Environmental & resource economics (fall even yrs, 3 cr)
RES-ECON 721 Advanced natural resource economics (fall, 3 cr)
GEO-SCI 666 Water resource policy (tbd, 3 cr)
POLSCI 784 Environmental policy (tbd, 3 cr)

3. Practicum (6 credits)
ECO 698 Practicum:

All students in the MS professional degree option are required to complete at least a 3-month long professional internship or equivalent. There are numerous internship opportunities with state and federal agencies (e.g., MA Watershed Initiative of the Executive Office of Environmental Affairs, MA Watershed Coalition, MA Department of Environmental Conservation and Recreation, MA Department of Environmental Protection, U.S. Environmental Protection Agency, U.S. Army Corps of Engineers, U.S. Geological Survey, etc.), nonprofit organizations, town planning boards, private consulting firms, and many other organizations. The advisory committee and the concentration coordinator may exempt some students with prior professional experience from this internship requirement. Each student will develop a publishable professional paper (based on the practicum) and defend it to their examination committee.

C. The MS Thesis Degree

Prerequisites

Candidates for an MS thesis degree in this concentration will be admitted on the basis of their academic training, work experience, and letters of recommendation. At a minimum, candidates will be expected to possess:

1) a Bachelor’s degree in:
 • a natural resources field or environmental sciences; or
 • the biological sciences with an emphasis in ecology; or
 • any field with strong background in mathematics, applied statistics, and policy with some coursework in biological and physical sciences, and professional experience working as a natural resources professional.

Note, prerequisites exist for many of the required courses. Students are expected to have satisfied these prerequisites prior to commencing the program or in addition to the curriculum requirements outlined below.

Requirements

Students in this concentration are expected to meet all of the requirements for an MS degree in ECo, as outlined in the student handbook, including the following:

1) A minimum of 35 credits is required, 21 of which must be in the major (defined broadly), 8 of which must be at the 600 level or above, and 12 of which must be a thesis specific to this concentration and approved by the student's advisory committee;
2) Successful completion of a comprehensive exam based upon the student’s academic training in environmental conservation, encompassing three “core” topic areas (environmental science, quantitative science, and human dimensions) in addition to the
required ECo core courses;
3) Successful final defense of the thesis; and
4) A minimum of one publishable-quality scientific paper resulting from the thesis research project.

Curriculum

Note, all courses ending in 97 have an additional letter designation (e.g., 697A) not specified below because it is subject to change; check SPIRE online for the current course number listing.

1. **Required Core Courses (8 credits)** (take all of the following)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECO 601</td>
<td>Research concepts (fall, 3cr)</td>
<td></td>
</tr>
<tr>
<td>ECO 697</td>
<td>Analysis of environmental data - lecture (fall, 3cr)</td>
<td></td>
</tr>
<tr>
<td>ECO 791A</td>
<td>Communicating science (spr, 1cr)</td>
<td></td>
</tr>
<tr>
<td>ECO 691A</td>
<td>Current research in environmental conservation (both, 1cr)</td>
<td></td>
</tr>
</tbody>
</table>

2. **Core Topic Areas (15 credits)** (including a minimum of one 500-level or above 3-4 credit course in each core topic area below, as approved by the students advisory committee; note, students may take courses other than those listed here to fulfill the core topic area requirements if they are approved by the students advisory committee and the Graduate Concentration Coordinator; course numbers are subject to change)

a. **Environmental Science** (take one or more of the following)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRC 528</td>
<td>Forest & wetland hydrology (fall odd yrs, 3 cr)</td>
<td></td>
</tr>
<tr>
<td>NRC 540</td>
<td>Forest resource management (spr even yrs, 4 cr)</td>
<td></td>
</tr>
<tr>
<td>NRC 564</td>
<td>Wildlife habitat management (fall, 4cr)</td>
<td></td>
</tr>
<tr>
<td>NRC 565</td>
<td>Wildlife population dynamics & management (fall, 4cr)</td>
<td></td>
</tr>
<tr>
<td>NRC 571</td>
<td>Fisheries science & management (fall even yrs, 4cr)</td>
<td></td>
</tr>
<tr>
<td>NRC 597</td>
<td>Aquatic ecology (spr odd yrs, 3cr)</td>
<td></td>
</tr>
<tr>
<td>NRC 597</td>
<td>Ecology of fish (spr even yrs, 4cr)</td>
<td></td>
</tr>
<tr>
<td>NRC 597</td>
<td>Watershed science & management (spr yrs, 3cr)</td>
<td></td>
</tr>
<tr>
<td>NRC 597</td>
<td>Wetlands assessment & field techniques (spr even yrs, 2 cr)</td>
<td></td>
</tr>
<tr>
<td>NRC 597</td>
<td>Conservation genetics (spr odd yrs, 3cr)</td>
<td></td>
</tr>
<tr>
<td>NRC 597</td>
<td>Global change ecology (fall, 3cr)</td>
<td></td>
</tr>
<tr>
<td>ECO 621</td>
<td>Landscape ecology (spr even yrs, 4cr)</td>
<td></td>
</tr>
<tr>
<td>ECO 697</td>
<td>Conservation biology (fall odd yrs, 3cr)</td>
<td></td>
</tr>
<tr>
<td>ECO 697</td>
<td>Diadromous fisheries ecology & conserv. (fall even yrs, 3cr)</td>
<td></td>
</tr>
<tr>
<td>ECO 697</td>
<td>Land use & watershed management (fall even yrs, 3 cr)</td>
<td></td>
</tr>
<tr>
<td>ECO 697</td>
<td>Advanced watershed management (spr even yrs, 3 cr)</td>
<td></td>
</tr>
<tr>
<td>ECO 697</td>
<td>Predator-prey interactions (fall even yrs, 3cr)</td>
<td></td>
</tr>
<tr>
<td>ECO 697</td>
<td>Urban ecology (fall, 4cr)</td>
<td></td>
</tr>
<tr>
<td>ECO 697</td>
<td>Applied conservation genetics (fall even yrs, 4cr)</td>
<td></td>
</tr>
<tr>
<td>ECO 697</td>
<td>Conservation of aquatic ecosystems (spr odd yrs, 3 cr)</td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>ECO 720</td>
<td>Ecological interactions of fishes (spr odd yrs, 3cr)</td>
<td></td>
</tr>
<tr>
<td>ECO 757</td>
<td>Advanced fisheries management (tbd, 3cr)</td>
<td></td>
</tr>
<tr>
<td>ECO 768</td>
<td>Wetlands ecology & conservation (fall even yrs, 3 cr)</td>
<td></td>
</tr>
<tr>
<td>OEB 797</td>
<td>Environmental evolution (fall, 3 cr)</td>
<td></td>
</tr>
<tr>
<td>PLSOIL 566</td>
<td>Soil formation, classification & land use (spr odd yrs, 3 cr)</td>
<td></td>
</tr>
<tr>
<td>PLSOIL 597</td>
<td>Wetland plant ID & ecology (fall even yrs, 3cr)</td>
<td></td>
</tr>
<tr>
<td>PLSOIL 597</td>
<td>Wetlands delineation (fall odd yrs, 3cr)</td>
<td></td>
</tr>
<tr>
<td>CE-ENG 560</td>
<td>Hydrology (fall, 3 cr)</td>
<td></td>
</tr>
</tbody>
</table>

b. Quantitative Science (take one or more of the following)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRC 577</td>
<td>Ecosystem modeling & simulation (fall odd yrs, 3cr)</td>
</tr>
<tr>
<td>NRC 587</td>
<td>Digital remote sensing (spr odd yrs, 3cr)</td>
</tr>
<tr>
<td>NRC 592</td>
<td>GIS for natural resource management (both, 3cr)</td>
</tr>
<tr>
<td>ECO 697</td>
<td>Advanced topics in GIS (fall odd yrs, 3cr)</td>
</tr>
<tr>
<td>ECO 697</td>
<td>Intermediate statistics for environmental cons. (spr, 4cr)</td>
</tr>
<tr>
<td>ECO 697</td>
<td>Advanced statistics for environmental cons. (fall even yrs, 4cr)</td>
</tr>
<tr>
<td>ECO 697</td>
<td>Multivariate statistics for environmental cons. (spr odd yrs, 4cr)</td>
</tr>
<tr>
<td>ECO 697</td>
<td>Analysis of environmental data - lab (fall, 2cr)</td>
</tr>
<tr>
<td>ECO 777</td>
<td>Advanced systems ecology (spr even yrs, 3cr)</td>
</tr>
<tr>
<td>GEO-SCI 595A</td>
<td>Advanced GIS (spr, 3 cr)</td>
</tr>
<tr>
<td>CE-ENG 577</td>
<td>Surface water quality modeling (spr, 3 cr)</td>
</tr>
<tr>
<td>CE-ENG 662</td>
<td>Water resources systems analysis (spr, 3 cr)</td>
</tr>
<tr>
<td>REGIONPL 625</td>
<td>Quantitative methods in planning (fall, 3 cr)</td>
</tr>
<tr>
<td>PLSOIL 661</td>
<td>Intermediate biometry (fall, 3 cr)</td>
</tr>
</tbody>
</table>

c. Human Dimensions (take one or more of the following courses)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRC 597</td>
<td>Ecological economics & sustainability (spr odd yrs, 3 cr)</td>
</tr>
<tr>
<td>NRC 597</td>
<td>Water resources management & policy (fall even yrs, 3 cr)</td>
</tr>
<tr>
<td>ECO 697</td>
<td>Federal environmental law & regulation (spr even yrs, 3cr)</td>
</tr>
<tr>
<td>ECO 697</td>
<td>Human dimensions of natural res. cons. (tbd, 3cr)</td>
</tr>
<tr>
<td>ECO 697</td>
<td>Natural resources policy & administration (tbd, 3cr)</td>
</tr>
<tr>
<td>REGIONPL 553</td>
<td>Resource policy & planning (spr even yrs, 3 cr)</td>
</tr>
<tr>
<td>REGIONPL 575</td>
<td>Environmental law & resource management (tbd, 3 cr)</td>
</tr>
<tr>
<td>RES-ECON 720</td>
<td>Environmental & resource economics (fall even yrs, 3 cr)</td>
</tr>
<tr>
<td>RES-ECON 721</td>
<td>Advanced natural resource economics (fall, 3 cr)</td>
</tr>
<tr>
<td>GEO-SCI 666</td>
<td>Water resource policy (tbd, 3 cr)</td>
</tr>
<tr>
<td>POLSCI 784</td>
<td>Environmental policy (tbd, 3 cr)</td>
</tr>
</tbody>
</table>

3. Thesis (12 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECO 699</td>
<td>Thesis</td>
</tr>
</tbody>
</table>
D. The PhD Degree

Prerequisites

Candidates for a PhD degree in this concentration will be admitted on the basis of their academic training, work experience, and letters of recommendation. At a minimum, candidates will be expected to possess:

1) a Master’s degree in:
 • a natural resources field or environmental sciences; or
 • the biological sciences with an emphasis in ecology; or
 • any field with strong background in mathematics, applied statistics, and policy with some coursework in and the biological and physical sciences, and professional experience working as a natural resources professional.

*Note, students wishing to pursue a PhD with only a BS degree must enroll in the MS degree program and successfully complete the requirements of the MS degree before being admitted into the PhD program.

Requirements

Students in this concentration are expected to meet all of the requirements for a PhD degree in ECo, as outlined in the student handbook, including the following:

1) A minimum of 18 dissertation credits is required, based on a research project specific to this concentration and approved by the student’s advisory committee; no other course credits are required other than those determined by the student’s advisory committee;
2) Successful completion of a comprehensive exam based upon the student’s academic training in environmental conservation, encompassing three “core” topic areas (environmental science, quantitative science, and human dimensions);
3) Successful final defense of the dissertation; and
4) A minimum of three publishable-quality scientific papers resulting from the dissertation research project.

E. Resources & Facilities

There are excellent opportunities for students to study water resource issues at local, regional, national, and international settings. Nearby, rivers, lakes, wetlands, and coastal areas provide excellent field opportunities to learn through interaction and research. The nearby Quabbin reservoir provides an excellent and accessible water supply system critical for the Boston metropolitan area. The Connecticut River watershed provides unique opportunities to study watershed systems and hydrology across four New England states. Faculty also conduct water resource research projects in several foreign countries in Asia, Africa and Latin America. At the university, students have access to several water and soil labs and department labs.
The 81,000 acre Quabbin Reservation is located just a few miles from campus.

The 81,000 acre Quabbin Reservation is located just a few miles from campus. The University of Massachusetts also maintains the Nantucket Field Station and the Marine Station at Gloucester. The Conte Anadromous Fish Research Center in Turners Falls offers excellent, modern facilities for both lab and field study of migratory fish behavior, ecology and physiology. Cooperation with the National Marine Fisheries Service allows graduate students to participate in research cruises in the Northwest Atlantic, as well as use facilities at the NMFS Woods Hole Laboratory. As members of the Five College School of Marine Science Program, students have access to research laboratories at Woods Hole and Waquoit Bay on Cape Cod. Further, concentration faculty conduct research in a variety of sites outside Massachusetts, and in water systems throughout the world.

F. Matriculation & Financial Aid

This program typically takes a full-time MS professional degree student 3-4 semesters to complete, a full-time MS thesis degree student 4-5 semesters to complete, and a full-time PhD student 8-10 semesters to complete, including the completion of a practicum/thesis/dissertation. However, some students may be able to complete the degree in less time and some take longer depending on their academic preparedness and the dictates of the practicum or thesis/dissertation research project.

Funding opportunities are limited, yet financial assistance is provided to virtually all of our MS thesis and PhD students through teaching or research assistantships (at Graduate Employee Organization bargained wage rates), University fellowships, or hourly wages. Tuition is waived during semesters in which at least a 10-hour assistantship or fellowship is awarded, but the student is responsible for most fees. Research assistantships are available through faculty members who have grant-supported research, and many faculty only accept students if they are able to provide grant-supported assistantships. Limited University fellowships are awarded by the Graduate School in open competition for those (including foreign applicants) who are endorsed by the Department.

Funding opportunities are more limited for students in the MS professional degree option. Some teaching assistantships and University fellowships may be available, or internship institutions may be able to provide some assistance, but most professional degree students are self-funded. Again, tuition is waived during semesters in which at least a 10-hour assistantship or
fellowship is awarded (or the equivalent from an internship employer), but the student is responsible for most fees.

G. Concentration Coordinator & Faculty Affiliates

The following on-campus faculty (both regular and adjuncts) and professional staff, including the Graduate Concentration Coordinator, are principally affiliated with this concentration and regularly serve in the role of the student’s advisory committee chair or member and instructor for core courses; other faculty and staff are occasionally involved in this concentration. See Departmental website for information about the faculty and staff (http://eco.umass.edu/index.php/people/).

Graduate Concentration Coordinator:
Timothy O. Randhir
University of Massachusetts
Dept. of Natural Resources Conservation
160 Holdsworth Way
Amherst, MA 01003-4210
Tel: 413-545-3969
Fax: 413-545-4358
Email: randhir@eco.umass.edu

Principal Faculty/Staff Affiliates:
- Paul Barten (pkbarten@eco.umass.edu)
- Bethany Bradley (bbradley@eco.umass.edu)
- Robert Brooks (rbrooks@eco.umass.edu)
- Andy Danylchuk (adanylch@eco.umass.edu)
- John Finn (finn@eco.umass.edu)
- Curt Griffin (cgriffin@eco.umass.edu)
- Alexander Haro (haro@usgs.gov)
- Scott Jackson (sjackson@umext.umass.edu)
- Francis Juanes (juanes@eco.umass.edu)
- Mathew Kelty (kelty@eco.umass.edu)
- Guy Lanza (glanza@eco.umass.edu)
- Andrew Whiteley (awhiteley@eco.umass.edu)
- Craig Nicolson (craign@eco.umass.edu)
- Andrew Whiteley (awhiteley@eco.umass.edu)